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Abstract— In an effort to assist in cleaning polluted oceans
and littered parks, this project presents a solution to use vision-
based manipulation and optimization-based motion planning to
recycle soda cans. With captured images from a camera above,
we are able to perform multi-mask segmentation and normal
estimation to calculate grasp poses for each can, both of which
are our main novel innovations. A designed nominal trajectory
starting with said grasp poses is accomplished by optimization-
based inverse kinematics solved subject to constraints imposed
by the environment, completing the pipeline for vision-based
manipulation.

Index Terms— segmentation, normal estimation, inverse kine-
matics, motion planning, trajectory optimization

I. INTRODUCTION

Pollution has been a growing threat to many marine life
species and environmental well-being. Large efforts have been
devoted to clean up oceans, parks, and other areas polluted
by plastic remains and human litter. This research project
will attempt to use robot arms to assist the cleaning effort.
With automation, we could potentially reduce the risk on
human cleaners and achieve greater efficiency and speed,
which accelerates the goal in creating a cleaner, healthier
planet.

There are existing literature on using soft robots equipped
with touch sensing to distinguish materials of recyclable
objects in order to facilitate single-stream recycling. [1] They
used manual feature selection, as opposed to k-nearest neigh-
bors and support machine vectors which achieved lower accu-
racy in material detection. In their conclusion, they specifically
cited that incorporating vision sensing could help improve
their accuracy. Our task is simpler, as we are not trying to
identify object materials, but we will solely be relying on
vision sensing. By combining ideas from computer vision and
trajectory optimization, we are interested in demonstrating a
working manipulation pipeline for this task, and we present
and discuss the details of our approach in this paper.

II. APPROACH

Our simulation environment is modeled after the example
clutter clearing station. [2] We have an iiwa arm with a Schunk
WSG gripper, a bin that acts as our ”recycling bin”, cans
(cylinders) to be ”recycled”, a custom plate to hold all of
our cans, and static cameras with RGB and depth sensors as

shown in Figure 1. Our strategic placement of the plate was
to minimize other objects being in view of the cameras while
still having it close enough to the arm so cans even on the
edge of the plate are in reach.

Fig. 1. Environment Setup.

The overall pipeline of our project is shown in Figure 2.
The pipeline can be broken down into two main systems,
perception and motion planning, were the initial input are
images from the cameras in the scene and the final output
are joint position commands to the iiwa.

Fig. 2. Pipeline of entire project.

III. PERCEPTION

Our perception setup includes static cameras in the world
frame that can view the full litter plate, so we are purely rely-
ing on vision and depth sensing. We also only want to leverage
geometric approaches for segmentation, as opposed to learning
such as Mask R-CNN. Figure 3 displays an overview of our
perception system pipeline starting with images captured by
our cameras to producing the grasp poses required for motion
planning.

In order to make a geometric approach simpler, we have
made some assumptions for our environment.



Fig. 3. Workflow of the perception system.

1) The litter plate will be a distinct color from the objects
on it.

2) The objects are far enough apart on the plate such that
grasping one will not interfere with the other objects on
the scene. A consequence of the this assumption is that
no objects are occluded from a camera above the litter
plate and have distinct gaps between them in an image
captured by the camera.

3) We have prior knowledge of geometry of the cans, i.e.
height, radius, color, etc.

4) There is allowed to be a calibration period before
segmentation is performed. The cameras will be adjusted
to view the entire litter plate and we will create methods
to filter out pixels that are beyond the plate.

These assumptions do not completely limit our approach. To
relax the first assumption, if we wanted a more robust approach
that does not depend on color, we could have used RANSAC
for plane removal. [2] Additionally, the second assumption
was made so we could capture images from the cameras only
once and determine all of the poses of the objects in the scene
at one time. This serves as a proof of concept, but if objects
are occluded or grasping one object moves another, we could
have re-run our perception pipeline to re-calculate grasp poses
after each can is removed.

A. Image Pre-processing

From some camera angles, in order to view the entire litter
plate, other objects, such as the iiwa arm, are also in view.
However, in order to preserve our simple color segmentation
problem, objects outside of the litter plate can be removed and
treated as empty space in the RGB image. This can easily be
done by determining the equations of the lines representing
the edges of the litter plate for both the front and back camera
images (Figure 4) and setting all pixels outside of these lines
equal to the color of empty space. Example post-process
images are shown in Figure 5.

Fig. 4. Front camera RGB image (left) and back camera RGB image (right)
before processing.

Fig. 5. Front camera RGB image (left) and back camera RGB image (right)
after arm is cropped out.

B. Segmentation

With image pre-processing, the color segmentation process
becomes very simple. Even from different camera angles, the
litter plate is always a gray-ish color such that all the values
of R, G, and B are all around the same and greater than 100.
On the other hand, our cans are a bright red so the plate can
easily be filtered out to create a mask for the cans via color
segmentation. Figure 6 is an example of an RGB image and
Figure 7 is the mask produced.

Fig. 6. RGB image captured by top
camera.

Fig. 7. Mask created for top camera
RGB image via color segmentation.

C. Multi-object Mask Segmentation

If there are multiple objects on the litter plate, such
as in Figure 6, then capturing an image will lose
information distinguishing separate objects. There is a
lot of literature on Mask R-CNN approaches for multi-
object segmentation, but we are solely implementing
geometric algorithms. Pseudocode for our geometric
approach to mask separation is displayed in Algorithm 1.

D. Point Cloud Projection

The pinhole camera model was used to map pixel locations
to 3D points in the world frame (Figure 8).

There was a slight complication likely caused by the fact
that pixel indices are discrete values while 3D points can
take on continuous values. Some of the pixels in the mask



Algorithm 1: Geometric Mask Separation.
Data: M = mask containing all objects. (True =

object pixel, False otherwise)
Result: out = a list containing a mask for each object.
while M contains True pixel do

i←− index of any True pixel in M
indices←− iteratively find all indices of True
pixels that are neighbors, neighbors of neighbors,
etc., of pixel at i
mask ←− image the size of M where pixel =
True at indices, False otherwise add mask to
out change all pixels at indices in M to False
to remove detected object

end

Fig. 8. Pinhole camera model. Adapted from [3].

that corresponded to the edge of the can projected onto the
plate, instead of the can. In Figure 9, there is a ring of green
points on the plate to the left of the can that should have been
the edge of the can. This single ring of edge points is not
entirely necessary, so we eroded the mask to get remove the
outer pixels of object in the mask to avoid having incorrectly
projected pixels. [4]

Fig. 9. Points incorrectly projected at edge of can.

E. Normal Estimation

We used the method for surface normal estimation described
in Section 5.2.2 of the 6.881 course notes and flipped all
normals to be facing the camera that generated the point cloud.
[2]

F. Calculating Grasp Poses

The final output of our perception system is grasp poses
for each can in the scene. Given the assumptions of our
environment, a can is either going to be horizontal or vertical.
In the vertical case, an ideal grasp pose is above the center
of the can with a rotation in which the y-axis is pointing
downward, due to the specification of the gripper frame
(Figure 10). In the horizontal case, an ideal grasp pose is
also above the center of the can in the x-y plane with a
rotation where the y-axis is pointing vertically downward, but
additionally the z-axis has to be parallel to the long axis of the
can. This is because the gripper is not wide enough to grasp
the can from the ends.

Fig. 10. Gripper frame. RGB corresponds with XYZ, respectively. Adapted
from [2].

In 6.881, we learned about using the antipodal pairs heuris-
tic to generate a grasp candidate (Section 5.3.4). [2] We tried to
use this method with a single can in the scene, which required
two cameras (the front and back cameras in Figure 1) because
point clouds of opposite sides of the can have to be visible in
order to even have an anitpodal pair of surface normals. We
had a working solution, but we had to leverage the geometry
of the can because a pair of normals from the ends of the can
were not a viable antipodal pair since the distance between the
pair would be greater than the gripper width. Additionally, we
wanted to eventually extend our grasp pose calculations for
multiple cans in the scene, but one can might occlude another
can from the perspective of one camera, which goes against
the purpose of why we had two cameras in the scene in the
first place.

Instead of using antipodal pairs, we developed another
method for generating grasp candidates that still depended on
the geometry of a can, but only required one camera from
above the center of the plate. In this method, for each can,
we filtered the surface normals to only keep the ones that
were sufficiently vertical and far from the plate. The vertical



normals of multiple cans can be seen in Figure 11. In the case
of a vertical can, these normals were all on the top/end of the
can. For a horizontal cylinder, the vertical normals should all
be in a line parallel to the long-axis of the can at the highest
point on the can’s side. However, since we are using sliding
windows for surface normal estimation, we might not have
calculated a normal centering exactly on the highest point of
the cylinder, but a linear regression of the positions in the x-
y plane of the sufficiently vertical normals results in a good
estimation. Since this regression line is parallel to the long-
axis of the can, then it will also be parallel to the normals on
the ends of the can. As discussed earlier, the z-axis of rotation
of the grasp pose should be parallel to the normals on the
ends of the can. The position of the grasp position can simply
be found from the average position of the vertical normals in
the x-y plane due to the symmetry of cylinders. The z-axis
position value will be equal to the highest z-axis position of
the vertical normals plus some offset to give the gripper some
clearance. Sample grasp poses calculated via this method are
shown in Figure 12. Pseudocode summarizing this method is
in Algorithm 2.

Fig. 11. Vertical normals on multiple cans.

Fig. 12. Grasp poses with a pre-grasp pose some offset higher.

This method is leveraging the properties of a cylinder, but
unlike the antipodal pairs method, it does not necessarily
require the specifications of the can, such as its height, as
long as it is given that the gripper is wider than the diameter
of the can. The height is needed to explicitly differentiate
between vertical and horizontal cans, which is what we do
in our code, but if the height is unknown, then using the same
linear regression calculation on the normals of a vertical can
will still produce a viable grasp rotation.

Algorithm 2: Calculating Grasp Poses.
Data: N = A list of normals for each object in the

scene.
Result: G = a grasp pose for each object.
for each list of normals in N do

filter out all normals that are not sufficiently
vertical or too close to the plate
positionx,y ←− average position of all vertical

normals in x-y plane
positionz ←− max(z-position of all vertical

normals) + offset
roll←− −π2
pitch←− 0
if can is horizontal then

axis←− linear regression of positions of all
vertical normals in x-y plane
yaw ←− angle between axis and y-axis in x-y
plane

else
yaw ←− 0 // can be anything

end
grasp pose←−
(positionx,y,z, rotationroll,pitch,yaw)

end

IV. MOTION PLANNING

The method for motion planning in our manipulation
pipeline is inspired by an exercise from Prof. Tedrake’s text-
book. [2] Our approach solves a series of inverse kinematics
problems along the trajectory, and the use of optimization-
based motion planning ensures that the iiwa’s end-effector
poses are as close as possible to the nominal trajectory subject
to constraints.

A. Defining Nominal Trajectory

In the designed nominal trajectory, several waypoints are put
in place in order to avoid collision with the bin, other cans,
and even the iiwa itself. They are strategically placed above the
bin, above the litter plate, and in the middle between the bin
and litter plate. Refer to Figure 13 to visualize the locations
of these waypoints.

Fig. 13. Waypoints above the bin (left), in between (middle), and above the
plate (right).



These waypoints, along with the pre-grasp and grasp poses
output by the perception system, divide the nominal trajectory
of grasping each can into the following segments. The pick
and place cycle for each can lasts 45 time units.

• t ∈ [0, 5): From above the plate to pre-grasp pose, gripper
is open

• t ∈ [5, 10): From pre-grasp pose to grasp pose
• t ∈ [10, 13): Stays still at grasp pose, closes gripper
• t ∈ [13, 18): From grasp pose to above the plate
• t ∈ [18, 24): From above the plate to the middle frame
• t ∈ [24, 30): From the middle frame to above the bin
• t ∈ [30, 33): Stays still at grasp pose, opens gripper
• t ∈ [33, 39): From above the bin back to the middle frame
• t ∈ [39, 45): From the middle frame back to above the

plate, resets t← 0

In addition, the simulation also allows for an initialization
period of 15 time units, in which the iiwa gets ready by moving
from its initial pose to above the plate. The end-effector
linearly interpolates its translation and rotation separately
when traveling between poses. One cycle of the pick and place
trajectory is illustrated in Figure 14.

Fig. 14. Trajectory visualization for picking and placing one soda can.

These defined end-effector trajectories are converted to
joint-space trajectories using optimization-based inverse kine-
matics, discussed below.

B. Inverse Kinematics as Constrained Optimization
With the nominal trajectory defined, we construct an inverse

kinematics problem for the MultibodyPlant in simulation.
Simultaneously, the inverse kinematics problem solves for
joint states

q = f−1
kin

(
XG

)
where fkin is the forward kinematics function and XG is the
gripper frame. The joint states must also minimize the cost
function

min ‖q − qdesired‖22
subject to constraints such as maximum joint velocities and
maximum position and rotation deviations from the nominal
trajectory. In our implementation, the deviation allowances are
narrowed when the gripper is near the cans, and loosened when
the gripper is traveling between the litter plate and the bin.

V. FUTURE WORK

Our simulation admittedly has an environment too sim-
plified for our approach to be applied to the real-world
environment. To start, the cans model is adopted from the mug
SDF model in the drake examples with the handle removed.
However, we can construct a more realistic models of soda
cans or import betters ones from, for instance, Gazebo. [5] In
the real world, cans will also likely have dents and we can
no longer rely on surface normals to reliably calculate grasp
poses. We can envision some sort of smoothing algorithm
if one wants to continue with this geometric approach, but
we likely would have to incorporate some sort of learning.
Realistically, there are also more just than cans in an environ-
ment that requires recycling. If we were to include arbitrary
objects to our scene, then a top camera is no longer sufficient
because some shapes look the same from a birds-eye view. For
example, a can and an hour glass could look the same from a
top camera, but only the can be recycled. We also likely can
no longer utilize color segmentation and would need to use
deep learning approaches.

We hope to improve our motion planning aspect by compar-
ing optimization-based trajectory planning algorithms against
sampling-based ones such as Rapidly Exploring Random Tree
(RRT), and determine which produces more optimal paths and
more natural poses for the robot arm. In tuning the inverse
kinematics solver, we may also reduce the tolerance from the
nominal path (while obeying joint limits, collision avoidance,
and other physical constraints) so that in cluttered scenarios,
the gripper is less likely to collide into other objects. To make
this study more applicable, we could potentially make a mobile
base for the iiwa and/or the trash bin to simulate a moving
robot and a moving person holding trash bag, our intended
real-life scenario.

VI. CONCLUSION

Our project demonstrates the full manipulation pipeline
covered during the semester. The perception system can suc-
cessfully detect multiple objects in a scene and our motion
planning system can construct trajectories to recycle them to
a bin. We present success in integrating multi-mask segmen-
tation, grasp pose generation, and optimization-based motion
planning to identify, pick and place objects. Key takeaways
from our work include the natural reliance on the geometric
properties of a scene when solely utilizing geometric approach.
When these properties are not necessarily a given, such as in
the real world, the limitations of our perception scheme are
exposed and alternate methods have to be further developed
to account for these variances.
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VII. APPENDIX

The source code of this project is contained in this Google
Colaboratory notebook.

A demonstration of the working simulation is uploaded to
YouTube here.
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