Trajectory Optimization of a Kneed Compass Gait
on Rough Terrain

George Chen
Dept. of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, MA
gcfchen@mit.edu

Abstract—To explore the area of actuated bipedal walkers,
this research project presents an optimization-based method for
a bipedal robot to navigate a rough terrain. Using a kneed
compass gait as the robot model, we were able to formulate
its kinematic and dynamic constraints, and plan a minimal-
energy trajectory through an uneven terrain in simulation. After
successfully solving the trajectory optimization problem using
the Sparse Nonlinear OPTimizer (SNOPT) in Drake, we were
able to compare the compass gait’s limit cycle in flat terrains to
that in rough terrains, and visualized the generated trajectory
in MeshCat.

Index Terms—trajectory optimization, limit cycle, legged loco-
motion, rough terrain navigation

I. INTRODUCTION

Bipedal robots enjoy the advantage of their agility and their
versatility of two freed hands, but their stability and control-
lability introduce unique challenges to research. There is an
abundant amount of existing research [1] [2] on quadrupedal
robots, which include justifying their stability and using dif-
ferent control policies to plan their behavior. The societal
applications that bipedal robots can be applied to, such as
contactless delivery as well as search and rescue, both of which
benefit from the bipedal robot’s free arms, are of great interest
in the field of robotics research.

In existing literature on rough terrain navigation,
quadrupedal robots are more commonly used compared
to bipedal robots. One potential reason is that quadrupeds are
easier to balance on rough terrain and would be less likely
to tip over. However, bipedal robot research has also been
growing significantly and there are many examples of bipedal
robots being used to traverse rough terrain. One example
makes a minimal controller for a compass-gait type bipedal
robot walking over rough terrain [1], but does not take into
account sensory feedback. Other bipedal robots use force
sensing in their controls scheme [2], but the speed of biped
robots traversing rough terrain is still quite slow (0.5 m/s).
A review of underactuated bipedal robots also confirms that
walking speeds for bipedal robots across rough terrain is an
aspect that can be improved, as well robot performance on
inclined terrains [3]. Overall, the problem of bipedal legged
locomotion over rugged terrains is a worthwhile research
area.

Silvia Knappe

Dept. of Electrical Engineering and Computer Science

Massachusetts Institute of Technology
Cambridge, MA
seknappe @mit.edu

II. KNEED COMPASS GAIT DYNAMICS

P:
Mg

Fig. 1. Kneed compass gait kinematics.

Consider the kneed compass gait model shown in Figure
1. The robot is modeled as a 4-link system, each with a
point mass at its center, and a hip connected at the top via
a continuous joint. The position of the hip has coordinates
(z,z), and the stance leg has an absolute angle of ¢; with
respect to the vertical axis. The rest of the coordinates are
relatively defined. Let 65 be the relative angle between the
stance leg and the swing leg. Let (o1 and (o be the angles at
the knee joints (i.e. the relative angle between the lower leg
and the upper leg) of the stance and swing legs, respectively.
A URDF model of the kneed compass gait model is adapted
from Michael Posa’s work from DAIR Lab of UPenn [4], with
modified physical parameters shown in Table I.

The configuration vector is therefore defined as a 6-
dimension vector q = [z, 2,01, 02, 1, cpg]T, and the system
state vector is x = [qT,qT]T. The nonlinear rigid body
dynamics of the kneed compass gait system can be succinctly

Parameter | Symbol | Value
upper leg length L 0.5
lower leg length L 0.5
hip mass mp 10
thigh / upper leg mass mg 2.5
shank / lower leg mass mg 2.5
TABLE I

PHYSICAL PARAMETERS OF THE KNEED COMPASS GAIT MODEL.

described by the manipulator equation [5],

M(q)d + C(q, 4)q = 7,(q) + Bu + ZJ?(q)Ai (1)

where M captures the system’s inertial properties, C the
Coriolis forces, and 7, the gravity vector. \; are the constraint
forces at both feet (i.e. ¢ € {1,2}), modeled as point contact,
and J; are the constraint Jacobians. The actuation matrix B
maps control inputs u at the knee joints and the hip into
generalized forces.

The limit cycle of the kneed compass gait to consists of a
two-link phase and a three-link phase, as illustrated in Figure
2. The stance leg is modeled as one rigid link like a pendulum.
At the start of the step, the knees starts out locked (i.e.
1, 2 = 0); its dynamics is equivalent to that of a two-linked
compass gait. Its swing leg then bends its knee to make a
stride, makes a knee strike and lands again with the knee
locked, returning to the dynamics of a two-link pendulum.
After the heel strike with the ground, the stance and swing
legs switch instantaneously, and the limit cycle repeats.

P 3-link dynamics pT T LT

L 2dnkdynamics |

N

/\/\ /p /\ /\\ /\

Knee-strike

Fig. 2. Limit cycle trajectory of a kneed compass gait. [5]

III. OPTIMIZATION

In order to extract the dynamical properties of the given
URDF model, we constructed a MultibodyPlant in Drake
[6] and utilized the MathematicalProgram to solve for
the trajectory optimization problem such that the robot would
navigate across the terrain.

We implemented an L2-norm cost on actuation effort so
that the robot could achieve its goal with minimal energy
while obeying all constraints. Mathematically, the optimization
problem can be written as

min ||ul|? s.t. dynamical constraints

where the dynamical constraints are discussed below.
The first portion of the constraints relates to the dynamics of
the robot. With the mass matrix M, Coriolis forces C, gravity

Hoslstike T

Tg» and actuation matrix B obtained with Drake from the
model of the robot, we imposed a constraint that the residuals
of the manipulator equation must equal zero. We also assumed
inelastic collisions between foot and ground, and reset the
velocity after every heel strike accordingly. The swing- and
stance- feet, when in contact with the ground, must reside
within the friction cone. Implicit Euler dynamics described
in Equation (2) and Equation (3) were also implemented to
calculate position and velocity at the next timestep.

qt + 1] = q[t] + htlq[t + 1] 2)
q[t + 1] = q[t] + h(t]q[] 3)

The next portion of constraints relates to the compass gait
kinematics. At the beginning of a step, we constrained the
robot to start with both feet on the ground. After the first
step, in order to maintain continuity between steps, we put a
stricter requirement that the feet had to start in the position as
the previous step. This means that after the robot swung its
right leg forward to take a step, for the next step, the right leg
should start where it finished in the previous step. Although
perhaps unlikely given the cost we implemented, we also put
constraints on the limits of the angles that the joints of the
robot could form. For example, we constrained the hip joint
such that the legs of the robot could at maximum be 180
degrees apart,

—5 <dlt.2) +qft,3] < TV € [0,7))

We also constrained the knee joints to only bend in the
positive direction, and limited them also to 180 degrees of
mobility; the lower leg of the robot should not rotate past the
upper leg.

0<qlt,z] < g,Vt €10,7) (5)

where x represents the index corresponding to the knee that
belongs to the swing leg. In order to take multiple steps, we
switched the swing and stance legs instantaneously after each
step was taken.

By definition, the stance foot of the robot was constrained
to be touching the ground at all times during the step, and the
knee in that leg was constrained to be locked out and straight.
In accordance with the 2-link/3-link transition described in
Figure 2, both the stance and swing legs were also constrained
to be straight at the beginning and end of a step. This constraint
was mostly kept for simplifying reasons; constraining the
swing leg to be straight at the end of its step means it’s already
straight when the next step starts and the swing leg becomes
the plant leg, so no additional work is needed to straighten out
the swing leg.

We elaborate further on the ground in the simulation section,
but in our ground made up of blocks, we make a simplifying
assumption that the robot advances 1 block per step. This
means that the swing foot starts out 1 block behind the stance
foot, and moves 1 block in front of the stance foot. Given this
assumption, we constrained the final position of the swing foot
to land within the next block relative to the stance leg.

Lastly, we needed to make sure the legs didn’t penetrate
the ground and that the swing leg didn’t collide with the
ground on taking a step. To do this, we implemented 2 helper
functions. One for getting the (z, z) distance from stance foot
with respect to the ground, and one for getting the (z,z)
distance of the swing foot with respect to the ground. We use
the stance foot helper to ensure that the distance between the
stance foot and the ground is always 0. For the swing leg, we
constrained the foot to have some clearance distance between
it and the ground so that the leg didn’t scuff on the ground
while walking, and so that the leg didn’t collide into the ground
on the step. We did this by making use of the helper function
that got the distance between the swing foot with respect to the
ground and made sure it was some clearance distance above
the ground. The distance we ended up using was the height
of the blocks we made the ground out of.

In order to successfully solve the optimization problem,
we did allow the robot some slack room in our constraints.
Everywhere where we constrained the foot position of the
robot to be 0, our realistic constraint was 0=+¢. This is because
the function used to get the distance between the foot and the
ground (CalcPointsPositions) never returned O exactly
when the foot was on the ground, which is likely due to
discretization error.

IV. SIMULATION AND RESULTS

Fig. 3. HTML animation of the kneed compass gait walking on a smooth
slope.

Our simulation environment consists of the robot model
as described in Posa’s URDF and the rough terrain ground
model. As a preliminary step, we investigated the compass
gait’s behavior when walking on a flat slope (Figure 3). After
imposing a periodic constraint and all dynamical constraints
(less the foot clearance constraint) stated above, the optimiza-
tion problem was solved using the SNOPT solver in Drake
[6]. From the resulting motion, it is evident that the angles of
the legs are continuous in the compass gait’s limit cycle. The
phase portrait of its states has two vertical jumps, indicating
that the next step starts at the angle at which the previous
step ends, but with a discontinuous angular velocity. Refer to
Figure 4 below for a visualization.

The rough terrain model composes of 10 rectangular blocks
that are 0.5 in width and 0.1 in height, rotated by a random
angle o ~ U(0,7/8) (a uniformly distributed random variable
between 0 and 7/8). A visualization of the environment is
illustrated in Figure 5. To simplify our implementation, we
have me some assumptions for our environment:

0.6
—— Blue leg swinging
—— Red leg swinging
@ EBlue-leg heel strike
@ FRed-leg heel strike

0.4 1

0.2

Angle blue leg wrt red leg
=]
[=]

01 0o 01 0z 03
Absolute angle red leg

* = Blue leg swinging
: —— Red leg swinging
: Elue-leg heel strike
Red-leg heel strike

Absolute angular velocity red leg

T T T
-0.1 00 01 02 03
Absolute angle red leg

Fig. 4. Limit cycle of the kneed compass gait walking on a smooth slope.
The blue trace corresponds to the stance leg and the red trace the swing leg.

o We have perfect knowledge of our uneven terrain, i.e. the
position and orientation of each block.

o The blocks do not overlap one another.

« The robot takes one step per block, as mentioned in the
optimization section.

L

Fig. 5. Simulation environment setup.

These assumptions do not completely limit our approach.
The results presented in this paper serve as a proof of concept,
but if we were to implement a more robust approach to plan
trajectories in uneven terrains, blocks may be overlapping and
the third assumption will be relaxed.

The resulting motion is shown in Figure 6. As expected,
the robot tends to bend its knee more and raise its foot higher
when the ground is more uneven. However, an interesting ob-

AV A v/}

Fig. 6. One step in HTML animation.

servation is that, with our optimization approach, the compass
gait prefers to use its hip actuator more due to the higher
cost of additionally actuating its knees. An attempt to recover
the compass gait’s “limit cycle” is shown in figures below. In
contrast to walking on flat grounds, the compass gait’s motion
is aperiodic when walking on uneven terrains. As evident in
Figure 7, the hip angles at the start of a step do not line up

with the configuration at which the heel strike occurred.
06 =
—— Blue leg swinging
—— Red leg swinging
o 0.4 @ Blue leg heel strike
& @ Red leg heel strike
T o2
£
=
g oo
u
=2
=]
= 02
=)
=
0.4
_06 T T T T T T T
-03 0.2 —0.1 0.0 01 02 03
Absclute angle red leg
4
—— Elue leg swinging
= 3 —— Red |eg swinging
i ----- Blue-leg heel strike
A Y A R I Red-leg heel strike
z
]
ER
=
-1
[=
n
o =2
=
2 -3
=
-4

00 02
Absolute angle red leg

-0.2 04

Fig. 7. Limit cycle of the kneed compass gait navigating a rough terrain. The
blue trace corresponds to the swing leg and the red trace the stance leg. Note
the knee strike occurred on the red trace in the bottom graph.

To confirm the results we visualized in the simulations,
plots of the state variables were generated to be able to
quantitatively visualize the trajectory of the robot. These plots
confirm that the stance knee is kept straight throughout the
step. Overall, the robot is moving forwards at a steady speed,
as can be seen in the x-hip plot, and it is lifting its knee to
take a step, as can be seen be the increase in angle in the
swing knee plot.

5.4
2 5.2
£=
X 5.0
T T T T T
5.6 57 5.8 5.9 6.0
Time
—0.50 +
2
= —0.55 A
~N
_0.60 L T T T T T
5.6 57 5.8 5.9 6.0
Time
a 0.5
2
o
£ 0.0+
=
Wi
T T T T T
5.6 57 5.8 5.9 6.0
Time
[=9
= 054
g
c 0.0
i
“ _0.5 L T T T T T
5.6 5.7 5.8 5.9 6.0
Time
©
2 0.50
-
2 0.25 -
H
0'00 E T T T T T
5.6 5.7 5.8 59 6.0
le—-12 Time
o 2
a
=
i
w 04 — —— ———
[%)
f=
=
v -5 T ; T T T
5.6 5.7 5.8 5.9 6.0
Time

Fig. 8. State variables during a step.

V. FUTURE WORK

Our piecewise linear representation of the ground may
allow us to naturally extend this project to design trajectories
for kneed compass gaits to climb up and down flights of
stairs. On the other hand, our simulation admittedly has an
environment with many simplifying assumptions and therefore
cannot be directly applied to a real-world environment. First,
the simulation assumes perfect information about the rough
terrains. However, even with the state-of-the-art extroceptive
sensors, robotic systems in the real world can neither measure
nor model perfectly the unknown stochasticity in the environ-
ment. Further, the designed trajectory from the solver could
be stabilized using trajectory stabilization techniques such
as the finite-horizon linear quadratic regulator (LQR), which
will significantly better our understanding of the system’s
dynamics.

REFERENCES

[1] F. lida and R. Tedrake, “Minimalistic control of biped walking in rough
terrain,” Autonomous Robots, vol. 28, no. 3, pp. 355-368, Apr. 2010.
[Online]. Available: https://doi.org/10.1007/s10514-009-9174-3

(2]

[3]

(4]
[5]

(6]

F. Sygulla and D. Rixen, “A force-control scheme for biped robots to walk
over uneven terrain including partial footholds,” International Journal of
Advanced Robotic Systems, vol. 17, no. 1, p. 1729881419897472, 2020.
[Online]. Available: https://doi.org/10.1177/1729881419897472

S. Gupta and A. Kumar, “A brief review of dynamics
and control of underactuated biped robots,” Advanced Robotics,
vol. 31, mno. 12, pp. 607-623, 2017. [Online]. Available:
https://doi.org/10.1080/01691864.2017.1308270

M. Posas. (2021) Planarwalker.urdf. https://github.com/DAIRLab/dairlib/
blob/master/examples/PlanarWalker/PlanarWalker.urdf.

R. Tedrake, Underactuated Robotics: Algorithms for Walking, Running,
Swimming, Flying, and Manipulation (Course Notes for MIT 6.832),
downloaded on May 20, 2021 from http://underactuated.mit.edu/.
“Model-based design and verification for robotics.” [Online]. Available:
http://drake.mit.edu/

