
Sensor Stabilization on a Segway Robot Using LQR Control
2.151 Final Project Report

G. Chen, A. Lenhard, I. Montanaro, S. Ni, J. Santillan

7 December 2020

Abstract

The sagittal dynamics and control of a stabilized, front-facing, actuated sensor suite on a segway
robot are considered. The goal of this project is to develop the dynamical model of the actuated sensor
suite, linearize said model to analyze its stability, stabilize the system using Linear Quadratic Regulator
(LQR) control, and simulate the system using MATLAB. The LQR cost function takes into account
limitations of the sensor and motors, and is weighted accordingly to produce an ideal control effort for
sensor stabilization.

1 Introduction

To test autonomy algorithms on hardware, a common choice for a ground robot is the Jackal [1] (Figure 1).
However, one of its drawbacks is its low maximum speed of 2.0 m/s. If one wants to develop algorithms
for high speed navigation [2], a new robot has to be used during hardware testing. An alternative ground
robot with a higher maximum speed of 5.0 m/s is the Loomo segway robot (Figure 2). This robot resolves
the speed issue, but a 2-wheeled segway robot will heavily pitch when accelerating or decelerating unlike a
stable 4-wheeled robot like the Jackal. Autonomy algorithms require readings from onboard sensors, i.e. for
localization, mapping, etc. If these sensors are mounted on the robot, then the robot’s pitch will also affect
the sensor readings. For example, when accelerating, the segway will pitch forward and a camera mounted
on the robot will end up looking at the floor, which is not useful sensor data.

Figure 1: 4-wheeled Jackal robot. Figure 2: 2-wheeled Loomo robot.

1.1 Approach

Instead of mounting the sensors in a fixed way, directly on the robot, it would be helpful to have an alter-
native. To alleviate this pitching issue, we can model the dynamics of an actuated sensor suite (i.e. camera,
lidar, etc.) mounted on the segway and develop a control scheme to ensure the suite stays level and provides
consistent sensor readings. This requires control of both the wheel actuation to move the robot, and the

1

simultaneous actuation of the platform upon which the sensors will sit. Because there are so many applica-
tions to this type of system, we found it to be an exciting project.

To model the Loomo robot with an attached sensor suite, a few assumptions are made for simplification.

1. The sensor suite is modeled as a point mass at the end of a pendulum. The sensor can be attached at
the end of a very light 3D printed plate.

2. Mass of the segway is evenly distributed and the center of mass is in the center of its height. This may
not be realistic, but it simplifies calculations.

The parameters of the Loomo model are tabulated in Table 1 below. They are based on the available Loomo
specifications from its developer [3], but some educated guesses were made since many of the details are not
publicly available.

Table 1: Specifications of Loomo model
Total mass 19 kg
Height from ground to top 0.64 m
Wheel radius 0.14 m
Height from wheel axle to top 0.5 m
Estimated total wheel mass 4 kg

The sensor suite by construction will be 1 kg total mass and have a length of 0.15 m.

The motors and surrounding hardware involved in the actuation of the wheels and sensor suite are imperfect,
and there is friction in the bearings and between the wheels and ground. Since the magnitude of the effects
is a function of the associated rotational velocities, we model this as damping with estimated damping con-
stants as follows:

Bw: 0.1 Nm/rad/s (wheel bearings)
Bs: 0.1 Nm/rad/s (sensor suite bearing)
Br: 0.02 Nm/rad/s (rolling friction on the ground) [4]

This report details the derivation of the dynamical model of the system, the design of its controller, and
results from the simulation.

2 Dynamics

Definitions of variables used in the segway and sensor suite system are described below and displayed in
Figure 3. (Please refer to next page.)

α: angle of wheel from vertical of world frame
θ: angle of segway shaft from vertical of world frame
β: angle of sensor suite from the segway shaft
xc: x position of the segway center of mass
yc: y position of the segway center of mass
xs: x position of the sensor suite center of mass
ys: y position of the sensor suite center of mass
R: radius of the segway wheel
L: length to the segway center of mass (half the segway axle)
lp: length from the segway center of mass to the sensor suite connection
ls: length of the sensor suite connection rod
m: mass of segway shaft

2

https://developer.segwayrobotics.com/developer/documents/segway-robot-overview.html
https://developer.segwayrobotics.com/developer/documents/segway-robot-overview.html

Figure 3: Sensor suite on a segway.

mw: mass of segway wheels
ms: mass of sensor suite (point mass)
There are existing literature modeling the dynamics of inverted double pendulums on carts.[5] However, in
this study, we took a different approach as the second ”link” of the double pendulum is actuated. The
equations of motion of the combined system (i.e. segway robot and its sensors) are derived via Lagrangian
methods. We define α, θ, and β as the generalized coordinates for this system. Examining the kinematics
of the segway robot, we can write,

xc = Rα+ L sin θ

yc = R+ L cos θ

Similarly, the kinematic equations for the senor suite are as follows,

xs = Rα+ (L+ lp) sin θ + ls sin (θ + β)

ys = R+ (L+ lp) cos θ + ls cos (θ + β)

Consequently, considering the components of potential energy T and potential energy U due to the wheel,
segway, and sensor suite, we applied Lagrange’s equation,

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= fi for i ∈ {α, θ, β}

where L = T −U , and obtained three equations of motion (corresponding to each of the generalized coordi-
nates) as follows,

τα = 2a [α̈] + c
[
θ̈ cos θ − θ̇2 sin θ

]
+ e

[
(θ̈ + β̈) cos (θ + β)− (θ̇ + β̇)2 sin (θ + β)

]
τθ = 2b

[
(θ̈ + β̈)

]
+c [α̈ cos θ]+d

[
(2θ̈ + β̈) cosβ − (2θ̇ + β̇)β̇ sinβ

]
+e [α̈ cos (θ + β)]+2f

[
θ̈
]
−w [sin θ]−z [sin (θ + β)]

τβ = 2b
[
θ̈ + β̈

]
+ d

[
θ̈ cosβ + θ̇2 sinβ

]
+ e [α̈ cos (θ + β)] + 2h

[
β̈
]
− z [sin (θ + β)]

where coefficients a, b, c, f, h, v, w, z are defined in the Appendix 8.1. For a thorough derivation of the La-
grangian mechanics, please also refer to 8.1.

3

2.1 Generalized Forces

Let τα be the generalized force (torque) associated with the α coordinate, τθ for the θ coordinate, and τβ
for the β coordinate. To find the actual values of these variables, we performed a power analysis. Power is
the product of torque and speed, so the power input to drive each component can be used to solve for the
generalized force (or torque, as in the following cases).

For the wheel actuation (associated with the generalized coordinate α), we write:

ταα̇ = τwα̇

For the shaft rotation,

τθ θ̇ = −τwθ̇

because the torque that actuates the wheel actually produces an opposite reaction torque on the shaft.

Similarly, for the sensor suite actuation,

τβ β̇ = τsβ̇

since the actuation inputs power into the system.

We also need to consider damping in the system, which, in our case, is caused by friction. The first type of
friction in the system results from the contact of the wheels on the ground. For this rolling friction, we asso-
ciated a damping constant of Br. Additionally, there is friction in each of the joints. We use the constants
Bw and Bs, respectively, to describe the damping at the points of wheel actuation and sensor suite actuation.

In the case of damping at the point of wheel actuation, we have to consider the relative velocity, defined as
α̇− θ̇.

Putting it all together, we have
τα = τw −Brα̇−Bw(α̇− θ̇)

τθ = −τw +Bw(α̇− θ̇)

τβ = τs −Bsβ̇

The damping constants outlined above construct the B matrix for our state equations:τατθ
τβ

 =

 τw
−τw
τs

−
Br +Bm −Bm 0
−Bm Bm 0

0 0 Bs

α̇θ̇
β̇

2.2 Linearization

To find an approximate linear representation for small motions about rest when the segway and suite system
is in a fully upright pose, we linearized about α = 0, θ = 0, β = 0, α̇ = 0, θ̇ = 0, β̇ = 0. This resulted in the
following linear equations:

τα = [2a]α̈+ [c+ e]θ̈ + [e]β̈

τθ = [c+ e]α̈+ [2(b+ d+ f)]θ̈ + [2b+ d]β̈ + [−w]θ + [−z](θ + β)

4

τβ = [e]α̈+ [2b+ d]θ̈ + [2(b+ h)]β̈ + [−z](θ + β)

Translating these linearized equations into matrix form and plugging in for our generalized forces results in
the following matrix system of equations:

 1 0
−1 0
0 1

[τw
τs

]
=

 2a c+ e e
c+ e 2(b+ d+ f) 2b+ d
e 2b+ d 2(b+ h)

α̈θ̈
β̈

+

Br +Bm −Bm 0
−Bm Bm 0

0 0 Bs

α̇θ̇
β̇

+

 0 0
−w −z
0 −z

[θ
θ + β

]

Hτ = I

α̈θ̈
β̈

+B

α̇θ̇
β̇

+C

[
θ

θ + β

]

After rearranging, we find our linearized state equations to be:

d

dt

θ

θ + β
α̇

θ̇

β̇

 =

0 0 0 1 0
0 0 0 1 1

I−1C −I−1B

θ
θ + β
α̇

θ̇

β̇

+

 0 0
0 0

I−1H

 τ

θ + β =
[
0 1 0 0 0

]

θ
θ + β
α̇

θ̇

β̇

It should be noted that θ + β and not β is used as a state variable because the angle of the sensor suite in
the world frame is θ + β, which is the angle we want driven to 0 radians to keep the sensor suite upright
regardless of the segway angle. β was previously used as a generalized coordinate because β represents the
angle of the sensor suite actuator and can be more readily related to the actuator’s generalized torque.

3 Controller Design

To determine if our system is controllable, the controllability matrix Cont for the system, given by

Cont =
[
B AB ... An−1B

]
was used as a metric. It was found using the ctrb() command in MATLAB with the A and B matrices
used as inputs. The rank of the controllability matrix is 5, so the system is fully controllable from the inputs.
Similarly, the observability of the system needs to be determined. The observability matrix for the system
was found using the obsv() command in MATLAB with the A and C matrices used as inputs. The rank
of the observability matrix is 5, so it can be concluded that all the states are fully observable from the outputs.

Since our linearized system is fully controllable, we are able to design a full-state feedback controller for
the linearized system. We used the Linear Quadratic Regulator (LQR) approach to design our full-state
feedback controller. The LQR algorithm finds a control effort u(t) that minimizes a cost function involving
a tradeoff between control effort and system performance. The cost function V to be minimized is given by,

min
u(t)

V =

∫ τ=Tf

τ=t

(xTQx+ uTRu) dτ

5

where x is the state vector, Q is the state penalty matrix, and R is the input penalty matrix.

The state and input penalty matrices are guided by the design of a controller that satisfies what we want
our maximum state and input values to be. In our case, the values of interest are the deviations of θ and
θ + β from 0 radians. For our system the maximum state and input deviations are:

θmax = 0.1 rad

(θ + β)max = 0.03 rad

τwmax = 10 N ·m

τsmax = 3 N ·m

These values were selected for a variety of reasons. θmax was selected with the segway tipping point in
mind. (θ + β)max was calculated as the angle that would cause a lidar to view the floor within its 25 meter
range. [6] τwmax and τsmax were selected based off of the wheel motor and sensor suite motor specifications,
respectively. It should be noted that this is not a guarantee that these states are limited to the specified
maximum values, however this provides an appropriate starting point for the controller design. After carefully
tuning the these parameters, we arrived at τ̂wmax = 5 N ·m and τ̂smax = 1 N ·m. Consequently, the state
penalty matrix Q can be written as

Q =

θ−2
max 0 0 0 0

0 (θ + β)
−2
max 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

Similarly, the input penalty matrix R can be written as

R =

[
τ̂−2
wmax

0
0 τ̂−2

wmax

]
After inputting these values into our two penalty matrices, the optimal gains were found to generate the
closed-loop system. The closed-loop pole-zero plot is shown in Figure 4.

Figure 4: Pole-Zero Map of LQR Closed-Loop System.

6

4 Results

Figure 5: Initial condition response to x0 = [0.3; 0.3; 25; 0; 0] - Angles.

The graphs above demonstrate the quick performance of the system. The angle of the segway shaft settles
very quickly, but it does have some steady state error, hovering at around 0.03 radians; however, the sensor
suite angle is what really matters. Similar to the segway angle, it converges very quickly. The difference is
that it has negligible error.

Figure 6: Initial condition response to x0 = [0.3; 0.3; 25; 0; 0] - Torques.

Since the Loomo robot starts off in an unstable configuration, it is at risk of falling over. Therefore, its
motors must be quick to counteract any moments due to gravity; as a result, the motors start off with
high-magnitude values of torque, as can be seen in the graphs above. Both motors rapidly tend to zero, and
soon the suite motor does not have to provide very much power. The wheel motor continues to provide a
small amount of torque, keeping the segway in motion. Intuitively, this makes sense: the Loomo will never
get to a perfect state of equilibrium, and even if it did, it would require some amount of input torque to
keep the system in motion and ultimately balanced.

The speed of the wheel started off at 25 rad/s, which translated to a tangential speed of 3.5 m/s, and reaches
a maximum speed of around 4.2 m/s. These values approach the limit of the Loomo’s capabilities, but
it is still able to comfortably able to achieve these readings. The segway angular velocity has a relatively
narrow trough in its corresponding graph and then quickly bounces back to near zero velocity. Similar to the
segway, the suite angular velocity has a trough in the same place as the segway; however, since the measure
of the suite angle is θ+ β, having a negative velocity from both the segway and the suite is what causes the
suite angle to overshoot in Figure 5. We see a slight peak in the suite angular velocity to make up for this
behavior.

7

Figure 7: Initial condition response to x0 = [0.3; 0.3; 25; 0; 0] - Speeds.

5 Conclusion

The graphs of our initial condition show that the Linear Quadratic Regulator works quite well for our
segway-suite system. To reiterate, the maximum values that are input in the Q and R matrices are just a
starting point, not a strict rule. Iterating on the parameters allowed for better performance, and surely there
are further optimizations that can ameliorate the response of our system. For example, these space-state
trajectories take for granted that real world actuators cannot immediately go from idle to active, there is
some delay.

In addition, there are many terms in the dynamics equations that end up dropping out due to linearization:
while this is mostly justified when operating around the equilibrium configuration, this system could benefit
from a higher fidelity model, and maybe linearizations around a few different points. This would allow the
Loomo greater flexibility and give better insight on the limits of our control scheme.

6 Project Tasks

Allison: dynamics, control, Matlab implementation, simulation, report
Isabella: dynamics, simulation, presentation slides, report
Susan: dynamics, control, Matlab implementation, report
Jason: dynamics, result analysis, presentation slides, report
George: dynamics, result analysis, presentation slides, report

7 References

[1] Jackal UGV - Small Weatherproof Robot - Clearpath. url: https://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/.

8

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/

[2] Jesus Tordesillas et al. “FASTER: Fast and Safe Trajectory Planner for Flights in Unknown Environ-
ments”. In: (May 2020). url: https://arxiv.org/pdf/2001.04420.pdf.

[3] Loomo spec. url: https://www.segway.com/loomo/loomo-spec/.

[4] Neville Hogan. “Segway™ Dynamics”. In: (Oct. 2020).

[5] Alexander Bogdanov. “Optimal Control of a Double Inverted Pendulum on a Cart”. In: (Dec. 2004).

[6] Tony Huang. RPLIDAR-A3 Laser Range ScannerRobotLaserRangeScanner. url: https://www.
slamtec.com/en/Lidar/A3.

8 Appendix

8.1 Derivation of Lagrangian Mechanics

To get our equations of motion via Lagrange mechanics, we need to calculate the total potential and kinetic
energy of our system. We start by determining the center of mass locations and their respective derivatives.

xc = Rα+ L sin θ

yc = R+ L cos θ

ẋc = Rα̇+ Lθ̇ cos θ

ẏc = −Lθ̇ sin θ

xs = Rα+ (L+ lp) sin θ + ls sin (θ + β)

ys = R+ (L+ lp) cos θ + ls cos (θ + β)

ẋs = Rα̇+ (L+ lp)θ̇ cos θ + ls(θ̇ + β̇) cos (θ + β)

ẏs = −(L+ lp)θ̇ sin θ − ls(θ̇ + β̇) sin (θ + β)

To find the total potential energy we broke the system down into three parts, the wheel, the segway, and
the sensor suite. Their respective potential energies are PEw, PEsegway, and PEs.

PEw = 0

PEsegway = mgL cos θ

PEs = msgys = msg[R+ (L+ lp) cos θ + ls cos (θ + β)]

PE = PEw + PEsegway + PEs

= 0 +mgL cos θ +msg[R+ (L+ lp) cos θ + ls cos (θ + β)]

= msgR+ [mgL+msg(L+ lp)] cos θ +msgls cos (θ + β)

(1)

Similarly to how we found the total potential energy, to find the total kinetic energy we first calculated
KEw, KEsegway, and KEs.

KEw =
1

2
mwẋ

2 +
1

2
Iwα̇

2

=
1

2
mw(Rα̇)2 +

1

2

[
1

2
mwR

2

]
α̇2

=
3

4
mwR

2α̇2

(2)

9

https://arxiv.org/pdf/2001.04420.pdf
https://www.segway.com/loomo/loomo-spec/
https://www.slamtec.com/en/Lidar/A3
https://www.slamtec.com/en/Lidar/A3

KEsegway =
1

2
m(ẋ2c + ẏ2c) +

1

2
Iθ̇2

=
1

2
m
(

(Rα̇+ Lθ̇ cos θ)2 + (−Lθ̇ sin θ)2
)

+
1

2

[
1

3
mL2

]
θ̇2

=
1

2
mR2α̇2 +mLRα̇θ̇ cos θ +

1

2
mL2θ̇2 cos2 θ +

1

2
mL2θ̇2 sin2 θ +

1

6
mL2θ̇2

=
1

2
mR2α̇2 +mLRα̇θ̇ cos θ +

2

3
mL2θ̇2

(3)

KEs =
1

2
m(ẋ2s + ẏs

2) +
1

2
Isβ̇

2

=
1

2
m((Rα̇+ (L+ lp)θ̇ cos θ + ls(θ̇ + β̇) cos (θ + β))2

+ (−(L+ lp)θ̇ sin θ − ls(θ̇ + β̇) sin (θ + β))2 +
1

2

[
msl

2
s

]
β̇2

=
1

2
ms

[
R2α̇2 + (L+ lp)

2θ̇2 cos2 θ + l2s(θ̇ + β̇)2 cos2 (θ + β) + 2R(L+ lp)α̇θ̇ cos θ

+2Rls(θ̇ + β̇)α̇ cos (θ + β) + 2ls(L+ lp)θ̇(θ̇ + β̇) cos θ cos (θ + β)

+ (L+ lp)
2θ̇2 sin2 θ + 2ls(L+ lp)θ̇(θ̇ + β̇) sin θ sin (θ + β) + l2s(θ̇ + β̇)2 sin2 (θ + β) +

1

2
msl

2
s β̇

2

=
1

2
msR

2α̇2 +
1

2
ms(L+ lp)

2θ̇2 +
1

2
msl

2
s(θ̇ + β̇)2 +msR(L+ lp)α̇θ̇ cos θ

+msRls(θ̇ + β̇)α̇ cos (θ + β) +msls(L+ lp)θ̇(θ̇ + β̇) cosβ +
1

2
msl

2
s β̇

2

(4)

KE = KEw +KEsegway +KEs

=

[
1

2
msR

2 +
3

4
mwR

2 +
1

2
mR2

]
α̇2 +

[
1

2
msl

2
s

]
(θ̇ + β̇)2 + [msR(L+ lp) +mRL] α̇θ̇ cos θ

+ [msls(L+ lp)] θ̇(θ̇ + β̇) cosβ + [msRls] α̇(θ̇ + β̇) cos (θ + β)

+

[
1

2
ms(L+ lp)

2 +
2

3
mL2

]
θ̇2 +

[
1

2
msl

2
s

]
β̇2

(5)

After finding the potential and kinetic energy of the system, we defined constants to simplify the rest of our
dynamics analysis. These constants are as follows:

Kinetic Energy Constants

a =
1

2
msR

2 +
3

4
mwR

2 +
1

2
mR2

b =
1

2
msl

2
s

c = msR(L+ lp) +mRL

d = msls(L+ lp)

e = msRls

f =
1

2
ms(L+ lp)

2 +
2

3
mL2

h =
1

2
msl

2
s

10

Potential Energy Constants
v = msgR

w = mgL+msg(L+ lp)

z = msgls

Plugging the kinetic energy constants into (5) results in:

KE = [a]α̇2 + [b](θ̇ + β̇)2 + [c]α̇θ̇ cos θ + [d]θ̇(θ̇ + β̇) cosβ + [e]α̇(θ̇ + β̇) cos (θ + β) + [f]θ̇2 + [h]β̇2 (6)

Plugging the potential energy constants into (1) results in:

PE = [v] + [w] cos θ + [z] cos (θ + β) (7)

Now that we have finalized our kinetic and potential energy equations, we can compute our Lagrangian and
follow Lagrange’s method.

L = KE − PE
= [a]α̇2 + [b](θ̇ + β̇)2 + [c]α̇θ̇ cos θ + [d]θ̇(θ̇ + β̇) cosβ + [e]α̇(θ̇ + β̇) cos (θ + β) + [f]θ̇2 + [h]β̇2

− [v]− [w] cos θ − [z] cos (θ + β)

(8)

d

dt

∂L
∂q̇i
− ∂L
∂qi

= fi

Where fi is the generalized force (torque) associated with q̇i and qi.

Generalized coordinates {α, θ, β}

α-coordinate:

∂L
∂α̇

= 2aα̇+ cθ̇ cos θ + e(θ̇ + β̇) cos (θ + β)

d

dt

∂L
∂α̇

= 2aα̈+ c
[
θ̈ cos θ − θ̇2 sin θ

]
+ e

[
(θ̈ + β̈) cos (θ + β)− (θ̇ + β̇)2 sin (θ + β)

]
∂L
∂α

= 0

τα = 2a [α̈] + c
[
θ̈ cos θ − θ̇2 sin θ

]
+ e

[
(θ̈ + β̈) cos (θ + β)− (θ̇ + β̇)2 sin (θ + β)

]
θ-coordinate:

∂L
∂θ̇

= 2b(θ̇ + β̇) + cα̇ cos θ + d(2θ̇ + β̇) cosβ + eα̇ cos (θ + β) + 2fθ̇

d

dt

∂L
∂θ̇

=2b(θ̈ + β̈) + c
[
α̈ cos θ − α̇θ̇ sin θ

]
+ d

[
(2θ̈ + β̈) cosβ − (2θ̇ + β̇)β̇ sinβ

]
+ e

[
α̈ cos (θ + β)− α̇(θ̇ + β̇) sin (θ + β)

]
+ 2fθ̈

(9)

∂L
∂θ

= −cα̇θ̇ sin θ − eα̇(θ̇ + β̇) sin (θ + β) + w sin θ + z sin (θ + β)

τθ = 2b
[
(θ̈ + β̈)

]
+c [α̈ cos θ]+d

[
(2θ̈ + β̈) cosβ − (2θ̇ + β̇)β̇ sinβ

]
+e [α̈ cos (θ + β)]+2f

[
θ̈
]
−w [sin θ]−z [sin (θ + β)]

11

β-coordinate:
∂L
∂β̇

= 2b(θ̇ + β̇) + dθ̇ cosβ + eα̇ cos (θ + β) + 2hβ̇

d

dt

∂L
∂β̇

= 2b(θ̈ + β̈) + d
[
θ̈ cosβ − θ̇β̇ sinβ

]
+ e

[
α̈ cos (θ + β)− α̇(θ̇ + β̇) sin (θ + β)

]
+ 2h

[
β̈
]

∂L
∂β

= −d
[
θ̇(θ̇ + β̇) sinβ

]
− e

[
α̇(θ̇ + β̇) sin (θ + β)

]
+ z [sin (θ + β)]

τβ = 2b
[
θ̈ + β̈

]
+ d

[
θ̈ cosβ + θ̇2 sinβ

]
+ e [α̈ cos (θ + β)] + 2h

[
β̈
]
− z [sin (θ + β)]

8.2 MATLAB source code

8.2.1 Controller + Plotting

1 % Group 6 Final Project
2 % Sensor Stabilization on a Segway Robot Using LQR Control
3 % A. Lenhard, I. Montanaro, S. Ni, J. Santillan, G. Chen
4

5 clear all, close all, clc
6

7 % Parameters
8 m = 15; % segway shaft mass (kg)
9 L = 0.25; % axle to mass center (m)

10 m_w = 4; % 2 wheels mass (kg)
11 R = 0.14; % wheel radius (m)
12 Bw = 0.1; % bearing friction wheel motor (N-m/rad/s)
13 Br = 0.02; % rolling friction (N-m/rad/s)
14 Bs = 0.1; % bearing friction suite motor (N-m/rad/s)
15 g = 9.8; % gravity (m/sˆ2)
16

17 m_s = 1; % sensor suite mass (kg)
18 l_s = 0.15; % sensor suite length (m)
19 l_p = 0.05; % length from segway com to sensor suite (m)
20

21 % ----- DYNAMICS -----
22

23 % coefficients from dynamics analysis for simplicity
24 a = Rˆ2*(1/2*m_s+1/2*m+3/4*m_w);
25 b = 1/2*m_s*l_sˆ2;
26 c = R*(m_s*(L+l_p)+m*L);
27 d = m_s*l_s*(L+l_p);
28 e = R*m_s*l_s;
29 f = 1/2*m_s*(L+l_p)ˆ2+2/3*m*Lˆ2;
30 h = 1/2*m_s*l_sˆ2;
31 w = g*(m_s*(L+l_p)+m*L);
32 z = m_s*g*l_s;
33

34 H = [1 0;
35 -1 0;
36 0 1]; % input weighting

12

37 I = [2*a c+e e;
38 c+e 2*(b+d+f) 2*b+d;
39 e 2*b+d 2*(b+h)]; % inertia matrix
40 k = [0 0;
41 -w -z;
42 0 -z]; % gravity "stiffness", (N-m/rad)
43 Bf = [(Br+Bw) -Bw 0;
44 (-Bw) Bw 0;
45 0 0 Bs]; % damping B matrix(N-m/rad/s)
46

47

48 % states: segway angle from upright (theta)
49 % sensor suite angle from upright (beta+theta)
50 % segway wheel angular velocity (omega_w)
51 % segway angular velocity (omega)
52 % sensor suite angular velocity (omega_s)
53

54 A = [0 0 0 1 0;
55 0 0 0 1 1;
56 inv(I)*k -inv(I)*Bf];
57 B = [zeros(2,2); inv(I)*H];
58 C = [0 1 0 0 0]; % output: (beta + theta) angle of sensor suite from upright
59

60 % ----- LQR CONTROLLER ------
61 t_p_max = 0.1; % maximum deviation of angle from upright (rad)
62 tb_p_max = 0.03; % maximum deviation of theta&beta (rad)
63 tau_max = 5; % maximum motor torque (N-m)
64 tau_s_max = 1; % maximum motor torque for suite (N-m)
65

66 Q = [1/t_p_maxˆ2 0 0 0 0;
67 0 1/tb_p_maxˆ2 0 0 0;
68 zeros(3, 5)];
69 R = [1/tau_maxˆ2 0;
70 0 1/tau_s_maxˆ2];
71

72 [K, S, ep] = lqr(A, B, Q, R);
73 % first row of K - gains for wheel motor torque input
74 % second row of K - gains for suite motor torque input
75

76 sys = ss(A-B*K, B, C, 0);
77

78 % ----- PLOTTING -----
79

80 set(0,’defaultTextInterpreter’,’latex’);
81 set(0,’defaultLegendInterpreter’,’latex’)
82 set(0,’defaultAxesTickLabelInterpreter’,’latex’);
83

84 % initial condition response
85

86 x0 = [0.3; 0.3; 25; 0; 0]; % intial condition
87

88 [y,t,x] = initial(sys, x0, 0.4);
89

90 save(’sim_data.mat’, ’y’, ’t’, ’x’);

13

91

92 plot_states(t, x, K, 3, "Initial Condition Response");
93

94 % ----- PLOTTING HELPER FUNCTION -----
95

96 function [] = plot_states(t, x, K, fig_num, suptitle)
97 mode = ’paper’; % either ’paper’ or ’slide’
98 if (mode == ’paper’)
99 r = 4; c = 2;

100 elseif (mode == ’slide’)
101 r = 2; c = 4;
102 end
103

104 figure(fig_num);
105 sgtitle(suptitle)
106

107 subplot(r,c,1);
108 plot(t, x(:,1));
109 grid on
110

111 title(’Segway Angle from Upright’);
112 ylabel(’θ(rad)’);
113 xlabel(’Time (s)’);
114

115 subplot(r,c,2);
116 plot(t, x(:,2));
117 grid on
118 title(’Suite Angle from Upright’);
119 ylabel(’$\beta + \theta (rad)$’);
120 xlabel(’Time (s)’);
121

122 subplot(r,c,3);
123 plot(t, (K(1,:)*x’)’);
124 grid on
125 title(’Wheel Motor Torque’);
126 ylabel(’τ_α (N\cdotm)’);
127 xlabel(’Time (s)’);
128

129 subplot(r,c,4);
130 plot(t, (K(2,:)*x’)’);
131 grid on
132 title(’Suite Motor Torque’);
133 ylabel(’τ_β (N\cdotm)’);
134 xlabel(’Time (s)’);
135

136 subplot(r,c,5);
137 plot(t, x(:,3));
138 grid on
139 title(’Wheel Angular Velocity’);
140 ylabel(’$\dot{\alpha}$ (rad/s)’);
141 xlabel(’Time (s)’);
142

143 subplot(r,c,6);
144 plot(t, x(:,4));

14

145 grid on
146 title(’Segway Angular Velocity’);
147 ylabel(’$\dot{\theta}$ (rad/s)’);
148 xlabel(’Time (s)’);
149

150 subplot(r,c,7);
151 plot(t, x(:,5));
152 grid on
153 title(’Suite Angular Velocity’);
154 ylabel(’$\dot{\beta}$ (rad/s)’);
155 xlabel(’Time (s)’);
156 end

15

8.2.2 Simulation

1 % Group 6 Final Project
2 % Leveling a sensor suite on a segway
3 % A. Lenhard, I. Montanaro, S. Ni, J. Santillan, G. Chen
4

5 clear all, close all, clc
6

7 load(’sim_data.mat’,’x’, ’t’); % data obtained from controller design file
8 tspan = t;
9 states = x;

10

11 figure(’units’,’normalized’,’outerposition’,[0 0 1 1]);
12 animateSol(tspan, states)
13

14 function animateSol(tspan, states)
15 li_w = 0.076; % lidar width (m)
16 li_h = 0.041; % lidar height (m)
17 L = 0.25; % axle to mass center (m)
18 l_s = 0.15; % length from segway axle to com of sensor suite(m)
19 l_sb = l_s-(li_h/2); %length of sensor suite connection rod (m)
20 l_p = 0.05; % length from segway com to sensor suite (m)
21 R = 0.14; % wheel radius (m)
22

23 hold on
24 % different lines/circles to animate
25 ground =plot([0],[0],’k’,’LineWidth’,1);
26 TH = 0:.1:2.1*pi; % theta values to plot circle for wheel
27 wheel = plot([0] + R*cos(TH), [R] + R*sin(TH),’k’,’LineWidth’,2);
28 shaft = plot([0],[0],’LineWidth’,3);
29

30 % T-shape for sensor suite platform
31 suite = plot([0],[0], ’r’, ’LineWidth’,2);
32 suite_bar = plot([0], [0], ’r’, ’LineWidth’,2);
33

34 % lines for lidar
35 lidar_top = plot([0],[0], ’m’, ’LineWidth’,1);
36 lidar_bot = plot([0],[0], ’m’, ’LineWidth’,1);
37 lidar_left = plot([0],[0], ’m’, ’LineWidth’,1);
38 lidar_right = plot([0],[0], ’m’, ’LineWidth’,1);
39

40 % initializing figure labels
41 xlabel(’x (m)’); ylabel(’y (m)’);
42 h_title = title(’t = 0.0 s’);
43 axis equal
44 axis([-0.25 2 -0.1 1]);
45 set(ground, ’XData’, [-1 2.5]);
46 set(ground, ’YData’, [0 0]);
47 x = 0; % initializing x position
48 t_diff = tspan(2)-tspan(1);
49

50 % Step through and update animation
51 for i = 1:length(tspan)
52 % An initial pause so the figure has time to fully open before the

16

animation starts running
53 if(i == 2)
54 pause(0.7)
55 end
56 % current time and state values
57 t = tspan(i);
58 current_state = states(i,:);
59 theta = current_state(1);
60 beta_theta = current_state(2);
61 dalpha = current_state(3);
62 x = x + (dalpha*R*t_diff);
63

64 % getting current positions of key points from current states
65 axle = [x R]; % center of wheel
66 shaft_top = axle + [2*L*sin(theta) 2*L*cos(theta)]; % top of segway

shaft
67 suite_connection = axle + [(L+l_p)*sin(theta) (L+l_p)*cos(theta)]; %

suite platform location on shaft
68 suite_top = suite_connection + [sin(beta_theta)*l_sb cos(beta_theta)*

l_sb]; %suite rod top endpoint
69 suite_left = suite_top +[cos(beta_theta)*(li_w*1.25)/2 -sin(beta_theta

)*(li_w*1.25)/2]; % suite T left endpoint
70 suite_right = suite_top +[-cos(beta_theta)*(li_w*1.25)/2 sin(

beta_theta)*(li_w*1.25)/2]; % suite T right endpoint
71

72 % four corners of lidar: top left, top right, bottom left, bottom
right

73 lidar_tl = suite_connection + [sin(beta_theta)*(l_sb+li_h) cos(
beta_theta)*(l_sb+li_h)]+[cos(beta_theta)*(li_w/2) -sin(beta_theta
)*(li_w/2)];

74 lidar_tr = suite_connection + [sin(beta_theta)*(l_sb+li_h) cos(
beta_theta)*(l_sb+li_h)]+[-cos(beta_theta)*(li_w/2) sin(beta_theta
)*(li_w/2)];

75 lidar_bl = suite_top +[cos(beta_theta)*(li_w/2) -sin(beta_theta)*(li_w
/2)];

76 lidar_br = suite_top +[-cos(beta_theta)*(li_w/2) sin(beta_theta)*(li_w
/2)];

77

78 set(h_title,’String’, sprintf(’t = %.2f s’,t)); % update title
79

80 % update all lines and circles for animation
81 set(wheel,’XData’,[axle(1)+R*cos(TH)]);
82 set(wheel,’YData’,[axle(2)+R*sin(TH)]);
83

84 set(shaft,’XData’,[axle(1) shaft_top(1)]);
85 set(shaft,’YData’,[axle(2) shaft_top(2)]);
86

87 set(suite,’XData’,[suite_connection(1) suite_top(1)]);
88 set(suite,’YData’,[suite_connection(2) suite_top(2)]);
89

90 set(suite_bar,’XData’,[suite_left(1) suite_right(1)]);
91 set(suite_bar,’YData’,[suite_left(2) suite_right(2)]);
92

93 set(lidar_top, ’XData’, [lidar_tl(1) lidar_tr(1)]);

17

94 set(lidar_top, ’YData’, [lidar_tl(2) lidar_tr(2)]);
95

96 set(lidar_bot, ’XData’, [lidar_bl(1) lidar_br(1)]);
97 set(lidar_bot, ’YData’, [lidar_bl(2) lidar_br(2)]);
98

99 set(lidar_left, ’XData’, [lidar_bl(1) lidar_tl(1)]);
100 set(lidar_left, ’YData’, [lidar_bl(2) lidar_tl(2)]);
101

102 set(lidar_right, ’XData’, [lidar_br(1) lidar_tr(1)]);
103 set(lidar_right, ’YData’, [lidar_br(2) lidar_tr(2)]);
104

105 pause(.05) % slow down animation to see progression
106 end
107 end

18

	Introduction
	Approach

	Dynamics
	Generalized Forces
	Linearization

	Controller Design
	Results
	Conclusion
	Project Tasks
	References
	Appendix
	Derivation of Lagrangian Mechanics
	MATLAB source code
	Controller + Plotting
	Simulation

